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EFFECT OF BOUNDARY CONDITIONS ON TURBULENCE

CHARACTERISTICS IN TWO-PHASE JET

FLOWS WITH PHASE TRANSITIONS

UDC 532.529Yu. V. Zuev

It is shown that there are no self-similarity and similarity of transverse fields of correlation moments
of fluctuating parameters of phases in two-phase jets, in contrast to one-phase jets. The influence of
the initial values of a number of parameters of a two-phase jet (gas temperature, volume concentration
of droplets in the initial cross section, and radius of the initial cross section of the jet) on turbulence
characteristics is analyzed on the basis of numerical simulations.
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Introduction. Jet flows in nature and engineering devices are normally turbulent. The changes in all
parameters of these flows, including the degree of their expansion, are determined by the turbulence characteristics
of the jets. The study of fluctuating characteristics of jet flows is not only of academic interest but is also important
for practice, e.g., for calculating the acoustic parameters of the jet. The microstructure of one-phase jet flows has
been well studied. In particular, experiments revealed self-similarity and similarity of transverse fields of fluctuating
velocities and their correlation moments in submerged jets.

The characteristics of turbulence of the phases can be found in papers dealing with experimental investiga-
tions of two-phase jets, e.g., in [1, 2], but the data obtained are not systematized and can be used only for testing
mathematical models. No systematic theoretical investigation of turbulence characteristics in two-phase jets was
performed either.

Calculated results for axisymmetric gas-droplet jets with phase transformations are given in the present
work, which allows one to identify the influence of the initial values of some governing parameters of two-phase jets
(boundary conditions) on turbulence characteristics.

Mathematical Model of a Two-Phase Turbulent Jet. The computations were based on the math-
ematical model described in [3], which consists of a system of averaged equations written in the boundary-layer
approximation for each phase and the model of turbulence including expressions for correlation moments of fluctu-
ating parameters of the phases. The discrete phase is described with the use of the particle-class concept. Particles
of one class are characterized by identical values of size, velocity, temperature, and other parameters. In gas-phase
equations, the parameters identical for all components (velocity and temperature) do not have any subscripts, and
the parameters whose values are different for different components (density, specific heat, and volume concentration)
are marked by the subscript k (k = 1, 2, . . . ,K); the parameters of droplets of class f in the equations are indicated
by the subscript f (f = 1, 2, . . . , F ).

Each phase of the two-phase turbulent jet is described by the balance equations for mass, momentum, and
energy. The equation of diffusion of the components is written for the gas phase, and the equation of changes in the
droplet diameter due to coagulation, fragmentation, and phase transitions is derived for the droplet phase. These
equations can be presented in the form
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Equations (1) are supplemented by the equations of state of the phases

P = ρkRkT, ρf = const (2)

and by the equation relating the volume concentrations of the phases and components:
K∑

k=1

αk +
F∑

f=1

αf = 1. (3)

The specific drag force of droplets, the specific heat flux, and the terms responsible for phase transformations,
coagulation, and fragmentation of droplets in Eqs. (1) are found by the formulas
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In Eqs. (1)–(3) and other expressions given above for interphase interactions, Fcf and CDf are the drag force and
drag coefficient of droplets of class f , Df and Dj are the diameters of droplets of classes f and j, respectively,
Dk is the diffusivity of the vapor component of the gas phase, cpk is the specific heat at constant pressure of the
kth component of the gas phase, cf is the specific heat of droplets of class f , Kfj , efj , and Ffj are the coagulation
constant, capture coefficient, and escape coefficient of collisions of droplets of classes f and j [4], i is the specific
enthalpy, ip is the specific enthalpy of mass experiencing the phase transition, P is the pressure of the gas phase,
R is the gas constant, Qconv is the specific convective heat flux, T is the temperature, u and v are the projections
of the velocity vector onto the x and y coordinate axes, up and vp are the projections of the velocity vector of mass
experiencing the phase transition onto the x and y coordinate axes, α is the volume concentration, αf,T is the heat-
transfer coefficient, λ is the thermal conductivity, ρ is the physical density, ρkn is the density of the vapor component
of the gas phase, based on the partial pressure of this component, ρks is the density of the vapor component of the
gas phase, based on the pressure of saturated vapors of these components at the droplet temperature, ϑf,p is the
mass converted from one aggregate state to another during a unit time in a unit volume of the medium owing to
phase transitions (rate of phase transitions for a droplet of class f), ϑf,c is the change in mass of droplets of class f

during a unit time in a unit volume of the medium owing to coagulation and fragmentation, ϑfj,c is the mass of
droplets of class j in a unit volume of the medium, passing during a unit time to class f owing to coagulation and
fragmentation, and Nu, Pr , Re, and Sh are the Nusselt, Prandtl, Reynolds, and Sherwood numbers. The fluctuating
parameters of the phases are primed, the parameters of the components k and i of the gas phase are indicated by
the subscripts k and i, and the parameters of droplets of classes f and j are marked by the subscripts f and j.
The angular brackets denote space-time averaging. For axisymmetric and two-dimensional jets, β = 1 and β = 0,
respectively.
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Coagulation and fragmentation of droplets are calculated by the model developed by Shraiber and described
in [4].

System (1)–(3) is solved under the following boundary conditions:

x = 0: u = u(y), αk = αk(y), T = T (y), uf = uf (y), vf = vf (y),

αf = αf (y), Tf = Tf (y), k = 1, . . . ,K, f = 1, . . . , F ;

y = ∞: u = ue, αk = αke, T = Te, uf = ufe, vf = 0,

αf = αfe, Tf = Tfe, k = 1, . . . ,K, f = 1, . . . , F ;

y = 0:
∂u

∂y
= 0,

∂αk

∂y
= 0,

∂T

∂y
= 0, k = 1, . . . ,K.

Parameters of the phases at the jet edge are indicated by the subscript e.
The system of averaged equations (1)–(3) is closed by expressions for correlation moments of fluctuating

parameters of the phases, which are obtained with the use of Prandtl’s model of turbulence extended to the case of
two-phase flows [3]:
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In these expressions, l0 is the Prandtl’s mixing path in a single-phase jet, Ku = u′/u′0, Kv = v′/v′0, Kuf = u′f/u′0,
Kvf = v′f/v′0, u′, v′, u′f , and v′f are the root-mean-square fluctuating velocities of the phases in the two-phase flow,
u′0 and v′0 are the root-mean-square fluctuating velocities of the gas phase, the influence of droplets being ignored,
and Sc0 is the Schmidt number of the single-phase jet. The Schmidt number for an axisymmetric jet is assumed to
be 0.8; the Prandtl’s mixing path is calculated by the formula [5]

l20 = B
[
∆umax/(∂u/∂y)max

]2

,

where B is a constant (for axisymmetric jets, B = 0.013); ∆umax and (∂u/∂y)max are the maximum values of the
difference in streamwise velocities and the derivative of the streamwise velocity of the gas in the jet cross section
considered.

The fluctuating velocities of the gas and droplets in expressions for correlation moments are calculated with
the use of the turbulence model described in [6]. This model is a modification of Abramovich’s model of turbulence
for two phase flows [7]. Interaction of a gas volume (mole) of size l0 with droplets located in the jet is considered
in [6]. The sought phase velocities are determined by solving the system of equations including the equation of
changes in momentum of the mole due to its interaction with droplets, the equation of motion of droplets in the
mole, the equation of changes in the total energy of the mole due to its interaction with droplets, the equation of
heat exchange between the droplets and the mole, the equations of state of the phases, and the equation relating
the volume concentrations of the phases.

The partial differential equations are approximated by difference equations with the use of a second-order
implicit six-point finite-difference scheme [8]. The nonlinear convective terms of the equations are written with the
use of upwind and downwind differences. The system of difference equations is solved by the sweep method. The
computation accuracy is monitored by the integral of excess energy of the phases, which should remain constant
over the jet length. The deviation of this integral in various cross sections of the jet from its value in the initial
cross section was within 4%.

The above-described mathematical model was compared in [9] with the models suggested in [1, 10–12]. In
addition, the computations based on all these models were compared with the experiments of [1, 2], where the
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Fig. 1. Fields of the dimensionless correlation moment 〈u′v′〉/∆u2
m in the jet cross section

x/r0 = 25: data of [1] (curve 1), data of [12] (2), present work (3), data of [11] (4), and data
of [10] (5); the points refer to the experimental data of [1].

TABLE 1

Computation variant T0, K αf0, 10−3 r0, mm

1 288 1,21 50
2 580 1.21 50
3 580 3.02 50
4 580 1.21 10

mean and fluctuating parameters of two-phase jets were measured. In terms of the mean parameters of the jet
flow, all models were demonstrated to yield similar results, which were in good agreement with the experimental
data. However, the above-described models give different turbulent characteristics of the phases. The degree of
this difference can be evaluated from Fig. 1, which shows also the experimental data of [1], where the correlation
moment of fluctuating velocities of the gas phase in an air jet with spherical glass particles about 100 µm in diameter
with a mass flow-rate concentration of particles (ratio of the flow rates of the particles and the gas) equal to unity
was measured. It is seen in Fig. 1 that the curve obtained by the model described in the present paper is located
between the curves obtained with the use of other models and, with allowance for a large scatter of experimental
points, is in satisfactory agreement with the experimental data.

It should be noted that the use of the models developed in [1, 10–12] involves difficulties associated with
setting the boundary conditions for the turbulent kinetic energy and especially its dissipation rate. In addition,
the models of [1, 10–12] contain up to 12 empirical constants, and some of them can be unknown functions of flow
parameters. The turbulence model used in the present work ensures satisfactory agreement between numerical and
experimental data with the use of only one empirical constant B in the expression for the mixing path, which is
assumed to be equal to the value of this constant for single-phase jets. This model of turbulence makes it possible
to calculate two-phase jets by setting the boundary conditions for averaged parameters of the phases only.

Effect of the Boundary Conditions on Characteristics of Turbulence in Jets with Phase Trans-
formations. Computation results for axisymmetric gas-droplet jets with phase transformations presented below
reveal the influence of the initial values of some governing parameters of two-phase jets on turbulence characteristics.
The parameters varied in the computations were the gas temperature, the volume concentration of droplets in the
initial cross section of the jet, and the radius of the initial cross section of the jet (radius of the nozzle from which
the jet escapes). The values of these parameters are listed in Table 1. The following values were used in all compu-
tation variants for the remaining parameters: ambient gas pressure P = 0.1 MPa; droplet diameter Df = 50 µm;

333



0

0.005

0.010

0.015

0.5 1.0 1.5 n0.5

1

2 3

hu0v0i/Du2m

0

0.8

0.4

1.2

50 100 x*

a*f,m

Fig. 2 Fig. 3

Fig. 2. Dimensionless correlation moment in different cross sections of a two-phase jet (computation variant
No. 2): x∗ = x/r0 = 100 (curve 1), 200 (2), and 500 (3).

Fig. 3. Volume concentration of droplets along the centerline of a two-phase jet (computation variant No. 2).

parameters of the gas and droplets at the nozzle exit: gas velocity u0 = 50 m/sec, droplet velocity uf0 = 50 m/sec,
and droplet temperature Tf0 = 288 K; parameters of the gas and droplets in the ambient medium: gas temperature
Te = 288 K, droplet temperature Tfe = 288 K, gas velocity ue = 0.01 m/sec, droplet velocity ufe = 0.01 m/sec,
volume concentration of droplets αfe = 10−8, and volume concentration of water vapors αke = 0.01193. Air jets
containing water droplets and exhausting into the air medium were considered. The fields of all parameters of these
jets at the nozzle exit were uniform.

Figure 2 shows the dimensionless correlation moment of fluctuating velocities of the gas phase as a function
of the dimensionless coordinate η0.5 = r/r0.5u (∆um = um − ue, where um and ue are the gas velocities at the
jet centerline and in the ambient space, respectively; r is the current value of the jet radius, and r0.5u is the jet
radius corresponding to ∆u/2), which was obtained in the computation variant No. 2 for five cross sections of a
nonisothermal two-phase jet with phase transitions (the curves for the cross sections x∗ = 300 and 400, which
are not shown in the figure, are located between curves 2 and 3). In this computation variant, the dimensionless
transverse fields of the correlation moment in the jet almost coincide with each other, beginning from the distance
x∗ = 200. Hence, the jet considered contains a region where the flow is self-similar in terms of the parameter
〈u′v′〉/∆u2

m (self-similarity is understood as the shape of the dimensionless field of a certain flow parameter being
independent of the streamwise coordinate). In a two-phase jet with phase transformations, because of suction of
air from the ambient space and evaporation of liquid droplets, the concentration of droplets drastically decreases,
beginning from the cross section x∗ ≈ 40 (evolution of the dimensionless volume concentration of droplets along
the jet centerline is shown in Fig. 3). In the cross section x∗ = 200, the jet, which was a two-phase medium at a
smaller distance from the nozzle, becomes a single-phase multispecies jet. At the jet part with a sufficiently high
concentration of droplets (in our case, at x∗ < 200), the presence of these droplets leads to suppression of turbulence
of the gas phase, which is reflected in the magnitude of the correlation moment 〈u′v′〉/∆u2

m (its value is lower than
that in a single-phase jet). Beginning from a certain cross section, the jet flow becomes a single-phase one, and this
region of the jet displays self-similarity of transverse fields of the correlation moment 〈u′v′〉/∆u2

m, which coincide
with the corresponding parameter of a single-phase jet. The same results were obtained in the computation variant
No. 3, which differs from the computation variant No. 2 by a higher concentration of droplets in the initial cross
section of the jet (by a factor of 2.5). In this variant, the transverse fields of the correlation moment 〈u′v′〉/∆u2

m

become self-similar, beginning from the cross section x∗ = 300.
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Fig. 4. Dimensionless correlation moment of fluctuating velocities of the gas phase in the
corresponding cross sections x∗100 of two-phase jets with different boundary conditions:
the numbers at the curves correspond to the numbers of the computation variants; the
dashed curve shows the field of the dimensionless correlation moment in the gas jet.

The influence of the boundary conditions on the transverse fields of the correlation moment 〈u′v′〉/∆u2
m can

be traced by analyzing the data in Fig. 4, which shows the dependences 〈u′v′〉/∆u2
m = f(η0.5) for four computation

variants for two-phase jets (see Table 1) in the cross section x∗ = 100 (in what follows, this cross section is denoted
as x∗100 for brevity). It follows from this figure that different computation variants yield different transverse fields of
the dimensionless correlation moment in those regions of two-phase jets where the influence of droplets on turbulent
characteristics of the phases in these jets is manifested. This means that there is no similarity of the transverse
fields of the correlation moment 〈u′v′〉/∆u2

m in these regions of two-phase jets (similarity of the transverse fields is
understood as the coincidence of dimensionless fields of identical parameters in the corresponding cross sections of
the jets).

According to Eq. (4), the value of the correlation moment 〈u′v′〉/∆u2
m in two-phase jets is affected by the

transverse gradient of the mean velocity of the gas and the gas-phase fluctuating velocities depending on the droplet
concentration and diameter.

All computation variants predict similar transverse fields of the gas velocity in the jet cross sections x∗100;
hence, the transverse gradient of the gas velocity can be ignored in comparing these variants.

Varaksin [13] suggested that the Stokes number in the averaged, large-scale, and small-scale oscillatory motion
should be used to determine the character of gas–particle interaction. The flow regime in which the particles act
as a passive admixture, i.e., are completely entrained by turbulent vortices, can be determined by only one Stokes
number Stk = ρfD2

fu/(36µrb) based on the local averaged parameters of the jet: density of the droplet substance ρf ,
droplet diameter Df , viscosity of the gas phase µ, and radius of the jet boundary rb. Kostyuk et al. [9] showed that
the particles can be regarded as a passive admixture for Stk 6 0.144. In this case, the particle size does not affect
turbulence characteristics; the latter depend on the particle concentration only. The value of the Stokes number
above which the particle size has no effect on turbulence characteristics was called the critical value (Stk∗) [9].

Figure 5 shows the Stokes number in the cross sections x∗100 of two-phase jets in different computation
variants. In all variants, the Stokes number has the maximum value at the centerline and decreases with distance
from the centerline because of the decrease in the gas-phase velocity and the size of droplets due to their evaporation.
In the computation variant Nos. 1 and 2, the values of the Stokes number at the jet centerline are close to Stk∗
or lower than Stk∗ in a wide range of variation of the jet radius. In these computation variants, therefore, the
values of 〈u′v′〉/∆u2

m in the jet cross sections x∗100 should be independent of the droplet diameter but should be
related to the volume concentration of droplets in these cross sections. Indeed, a comparison of the dependences
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Fig. 6. Transverse fields of the volume concentration of droplets in the cross sections x∗100 of two-
phase jets with different boundary conditions: the numbers at the curves correspond to the numbers
of the computation variants.

〈u′v′〉/∆u2
m = f(η0.5) plotted in Fig. 4 with the dependences αf = f(η0.5) in Fig. 6 shows that they are correlated:

the higher the volume concentration of droplets in the corresponding cross sections of the jet, the lower the value
of the considered correlation moment in these cross sections.

It follows from Fig 5 that the magnitude of the correlation moment of fluctuating velocities of the gas phase
in the computation variant No. 3 (Stk > Stk∗) should be affected by both the volume concentration and the size of
droplets (more exactly, the dimensionless size of droplets D∗

f = Df/rb). An increase in the droplet concentration
should decrease the fluctuating velocities of the gas, and the increase in the dimensionless droplet diameter should
increase this parameter and, hence, the correlation moments. In accordance with the computations performed, the
dimensionless size of droplets at the jet centerline in the cross section x∗100 is 10−4 in variant No. 1, 1.3 · 10−4 in
variant No. 2, 2 · 10−4 in variant No. 3, and 5.6 · 10−4 in variant No. 4. The dimensionless droplet size decreases
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Fig. 7. Dimensionless correlation moment of fluctuating velocities of the discrete phase in the cross
sections x∗100 of two-phase jets with different boundary conditions: the numbers at the curves
correspond to the numbers of the computation variants.

in the radial direction with distance from the jet centerline. In the computation variant No. 3, the dimensionless
droplet size in the jet cross section x∗100 exceeds the corresponding value in the computation variant Nos. 1 and 2,
but the droplet concentration in the jet cross section is substantially higher (see Fig. 6). The effect of the volume
concentration of droplets on the correlation moment 〈u′v′〉/∆u2

m in the computation variant No. 3 is stronger than
the effect of the droplet size; hence, the value of the correlation moment of fluctuating velocities of the gas phase
in this computation variant is lower than that in the computation variant Nos. 1 and 2.

The distribution of the dimensionless correlation moment of fluctuating velocities of the gas phase over the
jet cross section in the computation variant No. 4 (curve 4 in Fig. 4) corresponding to a smaller radius of the initial
jet cross section is close to that in the computation variant No. 2 (curve 2 in Fig. 4). This occurs for the following
reason. With initial cross section of the jet decreasing in the computation variant No. 4, the dimensionless droplet
diameter in the jet cross section x∗100 increases by more than a factor of 4, as compared to the computation variant
No. 2, which should have increased the intensity of turbulence of the gas phase. However, as the dimensionless
droplet diameter increases, the coefficient of turbulent diffusion of droplets decreases; as a result, the volume
concentration of droplets in the jet cross section considered increases (see Fig. 6), which should lead to a decrease
in the correlation moment of fluctuating velocities of the gas phase. These two effects resulting from the increase
in the dimensionless droplet diameter (in the considered range of its variation) compensated for each other; as a
result, the computed transverse field of the dimensionless correlation moment 〈u′v′〉/∆u2

m depends weakly on the
size of the initial cross section of the jet.

For all computation variants, the transverse fields of the correlation moment 〈u′v′〉/∆u2
m in the jet cross

section x∗ = 500 coincide with each other and with the transverse field of this correlation moment for a single-phase
jet. Hence, independent of the boundary conditions, two-phase jets display similarity of the transverse fields of
the correlation moment 〈u′v′〉/∆u2

m in jet regions far from the nozzle, where the volume concentration of droplets
becomes so small that the droplets do not affect the turbulent characteristics of the phases in these jets.

Figure 7 shows the transverse fields of the correlation moment 〈u′fv′f 〉/∆u2
f,m (∆uf,m is the difference in

velocities of droplets at the jet centerline and at its boundary) in the cross sections x∗100 of jets with different
boundary conditions. The numbers at the curves correspond to the numbers of the computation variants. Curves 1
and 2 in this figure coincide with curves 1 and 2 in Fig. 4, i.e., in the computation variant Nos. 1 and 2, the
correlation moments 〈u′v′〉/∆u2

m and 〈u′fv′f 〉/∆u2
f,m in the jet cross section x∗100 coincide, which can occur only in

the case of a moderate dimensionless size of droplets (Stk < Stk∗; see Fig. 5) whose relaxation time is smaller than
or close to the integral time scale of turbulence of the gas phase.
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Curves 3 and 4 in Fig. 7 are located much lower than curves 1 and 2, i.e., the correlation moment
〈u′fv′f 〉/∆u2

f,m in the computation variant Nos. 3 and 4 is substantially lower than that in the computation variant
Nos. 1 and 2. The reason is that the droplets in the jet cross section x∗100 in the computation variant Nos. 3 and 4,
as compared to the computation variant Nos. 1 and 2 have, first, a greater dimensional diameter (with Stk > Stk∗;
see Fig. 5) and, therefore, are less readily involved into oscillatory motion, and second, a higher concentration (see
Fig. 6), which ensures stronger suppression of gas turbulence by droplets and, as a consequence, decreases the
fluctuating velocities of droplets. Since Stk > Stk∗ in the computation variant Nos. 3 and 4, the transverse fields
of the correlation moment 〈u′v′〉/∆u2

m (see Fig. 4) do not coincide with the transverse fields of the correlation
moment 〈u′fv′f 〉/∆u2

f,m (see Fig. 7); a greater difference in the values of these correlation moments is observed in
variant No. 4. The result obtained is explained by a significant difference in fluctuating velocities of the gas and
droplets in the computation variant No. 4 in the cross section x∗100, which is caused by the above-noted influence
of the dimensionless diameter and concentration of droplets on turbulent characteristics of the phases (interaction
of the phases in oscillatory motion becomes weaker with increasing dimensionless diameter and decreasing droplet
concentration).

Conclusions. In the regions of two-phase jets with phase transitions, where the droplet concentration is
sufficient to affect the parameters of these jets, there is no similarity or self-similarity of transverse fields of all
characteristics of turbulence in the gas and disperse phase. In the regions of two-phase jets far from the nozzle,
where the droplet concentration becomes very low because of turbulent diffusion of droplets and mainly because
of their evaporation, the transverse fields of turbulence characteristics of the gas phase become similar and self-
similar, as in single-phase jets. The correlation moments of fluctuating velocities of small droplets whose local
Stokes numbers are lower than the critical value are the same as the corresponding characteristics in the gas phase.
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